DCAR: A Discriminative and Compact Audio Representation to Improve Event Detection

نویسندگان

  • Liping Jing
  • Bo Liu
  • Jaeyoung Choi
  • Adam Janin
  • Julia Bernd
  • Michael W. Mahoney
  • Gerald Friedland
چکیده

This paper presents a novel two-phase method for audio representation, Discriminative and Compact Audio Representation (DCAR), and evaluates its performance at detecting events in consumer-produced videos. In the first phase of DCAR, each audio track is modeled using a Gaussian mixture model (GMM) that includes several components to capture the variability within that track. The second phase takes into account both global structure and local structure. In this phase, the components are rendered more discriminative and compact by formulating an optimization problem on Grassmannian manifolds, which we found represents the structure of audio effectively. Our experiments used the YLI-MED dataset (an open TRECVID-style video corpus based on YFCC100M), which includes ten events. The results show that the proposed DCAR representation consistently outperforms state-of-the-art audio representations. DCAR’s advantage over i-vector, mv-vector, and GMM representations is significant for both easier and harder discrimination tasks. We discuss how these performance differences across easy and hard cases follow from how each type of model leverages (or doesn’t leverage) the intrinsic structure of the data. Furthermore, DCAR shows a particularly notable accuracy advantage on events where humans have more difficulty classifying the videos, i.e., events with lower mean annotator confidence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یادگیری واژه نامه برای آشکارسازی محل پلاک خودرو

Car license plate detection has been always a challenging task in the context of traffic control and traffic offenses. In this paper, the problem of license plate detection from gray scale images taken in natural conditions is addressed. Our car plate database consists of images with severe imaging conditions such as low quality images, far distanced cameras, and severe weather conditions. The ...

متن کامل

Compact Audio Representation for Event Detection in Consumer Media

Local audio-visual descriptors are often compactly stored using representations such as the soft quantization histogram [1]. Typically, classification performance with histogram representations is improved through the use of large codeword sets. Unfortunately, this approach runs into overfitting and scalability challenges when applied to richly diverse real-world collections. A novel “i-vector”...

متن کامل

Non - Speech Acoustic Event Detection Using

Non-speech acoustic event detection (AED) aims to recognize events that are relevant to human activities associated with audio information. Much previous research has been focused on restricted highlight events, and highly relied on ad-hoc detectors for these events. This thesis focuses on using multimodal data in order to make non-speech acoustic event detection and classification tasks more r...

متن کامل

Modeling Audio and Visual Cues

Audio-visual event detection aims to identify semantically defined events that reveal human activities. Most previous literature focused on restricted highlight events, and depended on highly ad-hoc detectors for these events. This research emphasizes generalizable robust modeling of single-microphone audio cues and/or single-camera visual cues for the detection of real-world events, requiring ...

متن کامل

Counting Grid Aggregation for Event Retrieval and Recognition

Event retrieval and recognition in a large corpus of videos necessitates a holistic fixed-size visual representation at the video clip level that is comprehensive, compact, and yet discriminative. It shall comprehensively aggregate information across relevant video frames, while suppress redundant information, leading to a compact representation that can effectively differentiate among differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.04378  شماره 

صفحات  -

تاریخ انتشار 2016